3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Полезное увеличение микроскопа это

6.2. Микроскоп

Микроскоп предназначен для наблюдения мелких объектов с большим увеличением и с большей разрешающей способностью, чем дает лупа. Оптическая система микроскопа состоит из двух частей: объектива и окуляра. Объектив микроскопа образует действительное увеличенное обратное изображение предмета в передней фокальной плоскости окуляра. Окуляр действует как лупа и образует мнимое изображение на расстоянии наилучшего видения (рис. 6.4). По отношению ко всему микроскопу рассматриваемый предмет располагается в передней фокальной плоскости.


Рис. 6.4. Оптическая схема микроскопа.

6.2.1. Увеличение микроскопа

Действие микрообъектива характеризуют его линейным увеличением:

где – фокусное расстояние микрообъектива, – расстояние между задним фокусом объектива и передним фокусом окуляра, называемое оптическим интервалом или оптической длиной тубуса.

Изображение, создаваемое объективом микроскопа в передней фокальной плоскости окуляра рассматривается через окуляр, который действует как лупа с видимым увеличением:

Общее увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра:

Если известно фокусное расстояние всего микроскопа, то его видимое увеличение можно определить так же, как и у лупы:

Как правило, увеличение современных объективов микроскопов стандартизованное и составляет ряд чисел: 10, 20, 40, 60, 90, 100 крат. Увеличения окуляров тоже имеют вполне определенные значения, например 10, 20, 30 крат. Во всех современных микроскопах имеется комплект объективов и окуляров, которые специально рассчитываются и изготавливаются так, что подходят друг к другу, поэтому их можно комбинировать для получения разных увеличений.

6.2.2. Поле зрения микроскопа

Поле зрения микроскопа зависит от углового поля окуляра , в пределах которого получается изображение достаточно хорошего качества:

При данном угловом поле окуляра линейное поле микроскопа в пространстве предметов тем меньше, чем больше его видимое увеличение.

6.2.3. Диаметр выходного зрачка микроскопа

Диаметр выходного зрачка микроскопа вычисляется следующим образом:

где – передняя апертура микроскопа.

Диаметр выходного зрачка микроскопа обычно немного меньше диаметра зрачка глаза (0.5 – 1 мм).

При наблюдении в микроскоп зрачок глаза нужно совмещать с выходным зрачком микроскопа.

6.2.4. Разрешающая способность микроскопа

Одной из важнейших характеристик микроскопа является его разрешающая способность. Согласно дифракционной теории Аббе, линейный предел разрешения микроскопа, то есть минимальное расстояние между точками предмета, которые изображаются как раздельные, зависит от длины волны и числовой апертуры микроскопа:

Предельно достижимую разрешающую способность оптического микроскопа можно сосчитать, исходя из выражения для апертуры микроскопа (). Если учесть, что максимально возможное значение синуса угла – единичное (), то для средней длины волны можно вычислить разрешающую способность микроскопа: .

Из выражения (6.11) следует, что повысить разрешающую способность микроскопа можно двумя способами: либо увеличивая апертуру объектива, либо уменьшая длину волны света, освещающего препарат.

Иммерсия

Для того чтобы увеличить апертуру объектива, пространство между рассматриваемым предметом и объективом заполняется так называемой иммерсионной жидкостью – прозрачным веществом с показателем преломления больше единицы. В качестве такой жидкости используют воду (), кедровое масло (), раствор глицерина и другие вещества. Апертуры иммерсионных объективов большого увеличения достигают величины , тогда предельно достижимая разрешающая способность иммерсионного оптического микроскопа составит .

Применение ультрафиолетовых лучей

Для увеличения разрешающей способности микроскопа вторым способом применяются ультрафиолетовые лучи, длина волны которых меньше, чем у видимых лучей. При этом должна быть использована специальная оптика, прозрачная для ультрафиолетового света. Поскольку человеческий глаз не воспринимает ультрафиолетовое излучение, необходимо либо прибегнуть к средствам, преобразующим невидимое ультрафиолетовое изображение в видимое, либо фотографировать изображение в ультрафиолетовых лучах. При длине волны разрешающая способность микроскопа составит .

Читать еще:  Специальность подземная разработка месторождений полезных ископаемых

Кроме повышения разрешающей способности, у метода наблюдения в ультрафиолетовом свете есть и другие преимущества. Обычно живые объекты прозрачны в видимой области спектра, и поэтому перед наблюдением их предварительно окрашивают. Но некоторые объекты (нуклеиновые кислоты, белки) имеют избирательное поглощение в ультрафиолетовой области спектра, благодаря чему они могут быть «видимы» в ультрафиолетовом свете без окрашивания.

6.2.5. Полезное увеличение микроскопа

Глаз наблюдателя сможет воспринимать две точки как раздельные, если угловое расстояние между ними будет не меньше углового предела разрешения глаза. Для того чтобы глаз наблюдателя мог полностью использовать разрешающую способность микроскопа, необходимо иметь соответствующее видимое увеличение.

Полезное увеличение – это видимое увеличение, при котором глаз наблюдателя будет полностью использовать разрешающую способность микроскопа, то есть разрешающая способность микроскопа будет такая же, как и разрешающая способность глаза.

Если две точки в передней фокальной плоскости микроскопа расположены друг от друга на расстоянии , то угловое расстояние между изображениями этих точек . Из выражений (6.11) и (6.8) можно вывести видимое увеличение микроскопа:

Поскольку обычно диаметр выходного зрачка микроскопа около 0.5 – 1 мм, угловой предел разрешения глаза 2´ – 4´. Если взять среднюю длину волны в видимой области спектра (0.5 мкм), то для полезного увеличения микроскопа можно вывести зависимость:

Микроскоп с видимым увеличением меньше 500А не позволяет различать глазом все тонкости структуры предмета, которые изображаются как раздельные данным объективом (). Использование видимого увеличения больше 1000А нецелесообразно, так как разрешающая способность объектива не позволяет полностью использовать разрешающую способность глаза ().

Оптическая система микроскопа

Ø Общие принципы создания изображения.

По дифракционной теории образования изображения Аббе полное изображение объекта, воспроизводимое с помощью микроскопа, получается в процессе наложения двух изображений, которые сформированы за счет явлений дифракции (первичное изображение) и интерференции (вторичное изображение) светового потока, прошедшего через объект. Принцип действия микроскопа прост: пучок световых лучей направляется линзой конденсора через образец, а полученное изображение затем увеличивается с помощью линз.

Рассмотрим принцип создания изображения более подробно. Объект (препарат) располагают на предметном стекле. Конденсор концентрирует на объекте пучок света, отражающегося от зеркала. Источником света в микроскопе чаще всего служит специальный осветитель; иногда зеркало направляет на объект обычный дневной свет. Диафрагмы — полевая и апертурная ограничивают световой пучок и уменьшают в нём долю рассеянного света, попадающего на препарат «со стороны» и не участвующего в формировании изображения.

Возникновение изображения препарата в микроскопе в основных (хотя и наиболее простых) чертах можно описать в рамках геометрической оптики. Лучи света, исходящие от объекта, преломляясь в объективе, создают перевёрнутое и увеличенное действительное изображение оптическое изображение объекта. Это изображение рассматривают через окуляр. При визуальном наблюдении микроскоп фокусируют так, чтобы оптическое изображение находилось непосредственно за передним фокусом окуляра. В этих условиях окуляр работает как лупа: давая дополнительное увеличение, он образует мнимое изображение (по-прежнему перевёрнутое); проходя через оптические среды глаза наблюдателя, лучи от мнимого изображения создают на сетчатке глаза действительное изображение объекта. Обычно мнимое изображение располагается на расстоянии наилучшего видения от глаза.

Читать еще:  Кедровая настойка польза и вред

Ø Числовая (нумерическая) апертура и разрешающая способность.

Числовая апертура объектива (А) — произведение синуса половины апертуры на показатель преломления среды между предметом и объективом: А = n х sin α, где
п — показатель преломления среды, лежащей между объектом наблюдения и объективом,
α — половина угла раствора светового пучка, исходящего из точки и попадающего в объектив. Числовая апертура определяет ряд важнейших свойств микроскопа: яркость изображения, «проникающую» и «отображающую» способности, т.е. степень сходства изображения с предметом. Чем больше числовая апертура, тем более мелкие подробности в состоянии воспроизводить объектив.

Разрешающая способность — это способность глаза или оптического прибора различать наименьшее расстояние между изображениями двух соседних точек (линий), которые различаются как два отдельных изображения. Говоря иными словами, если мы сближаем две удаленные друг от друга точки, то по достижении какого-то критического расстояния они сольются и будут восприниматься как одна. Разрешающая способность (разрешение0 – это то наименьшее расстояние, на котором две близлежащие точки объекта еще воспринимаются раздельно.

Например, невооружённый человеческий глаз имеет разрешающую способность около 1/10 мм, или 100 мкм. Это означает, что если человек смотрит на две линии, которые находятся друг от друга на расстоянии менее чем 100 мкм, они сливаются в одну.

d = (0.61λ)/(nxsinα)

Таким образом, разрешающая способность зависит от длины волны света, показателя преломления среды. Кроме того, разрешающая способность имеет предел, обусловленный волновыми свойствами света. Согласно общей закономерности, наблюдая объект в каком-либо излучении с длиной волны l, невозможно различить элементы объекта, разделённые расстояниями, намного меньшими, чем l. Эта закономерность проявляется и в микроскопе, причём количественное её выражение несколько различно для самосветящихся и несамосветящихся объектов.

Ø Увеличение микроскопа.

Под увеличением микроскопа следует понимать отношение размера изображения препарата на сетчатке глаза, образованное при наблюдении через микроскоп, к размеру того же препарат, полученному на сетчатке при наблюдении невооруженным глазом. Общее увеличение микроскопа рано произведению увеличения объектива на увеличение окуляра. Если между ними расположена одна или несколько увеличивающих систем, то общее увеличение микроскопа равно произведению значений увеличений всех оптических систем, включая промежуточные: объектива, окуляра, бинокулярной насадки, оптовара или проекционных систем: Гм = o6x Гокx ql x q2 x. , где Гм — общее увеличение микроскопа; об — увеличение объектива; Гок — увеличение окуляра; ql, q2 . — увеличение дополнительных систем. Например, в отечественных микроскопах БИОЛАМ Р-11, С-11 монокулярная насадка не имеет увеличения, следовательно, общее увеличение микроскопа с объективом 90 х и окуляром 10 х будет: 90 x 10 = 900 х Бинокулярная насадка АУ-12, устанавливаемая на микроскопах БИОЛАМ Р-15, БИОЛАМ И, имеет собственное увеличение 1,5х. Следовательно, общее увеличение микроскопа в этом случае будет: 90x10x1,5 = 1350х. Увеличение микроскопа может достигать 2000х.

Ø Полезное увеличение микроскопа.

Полезное увеличение – это видимое увеличение, при котором глаз наблюдателя будет полностью использовать разрешающую способность микроскопа, то есть разрешающая способность микроскопа будет такая же, как и разрешающая способность глаза. Полезное увеличение микроскопа должно быть не более 1000 числовых апертур объектива и не менее 500: 500Аоб

Полезное увеличение микроскопа

Глаз наблюдателя сможет воспринимать две точки как раздельные, если угловое расстояние между ними будет не меньше углового предела разрешения глаза. Для того чтобы глаз наблюдателя мог полностью использовать разрешающую способность микроскопа, необходимо иметь соответствующее видимое увеличение.

Читать еще:  Сок алоэ чем полезен для кожи лица

Полезное увеличение – это видимое увеличение, при котором глаз наблюдателя будет полностью использовать разрешающую способность микроскопа, то есть разрешающая способность микроскопа будет такая же, как и разрешающая способность глаза.

Если две точки в передней фокальной плоскости микроскопа расположены друг от друга на расстоянии , то угловое расстояние между изображениями этих точек . Из выражений (6.11) и (6.8) можно вывести видимое увеличение микроскопа:. (6.12)

Поскольку обычно диаметр выходного зрачка микроскопа около 0.5 – 1 мм, угловой предел разрешения глаза 2´ – 4´. Если взять среднюю длину волны в видимой области спектра (0.5 мкм), то для полезного увеличения микроскопа можно вывести зависимость: . (6.13)

Микроскоп с видимым увеличением меньше 500А не позволяет различать глазом все тонкости структуры предмета, которые изображаются как раздельные данным объективом ( ). Использование видимого увеличения больше 1000А нецелесообразно, так как разрешающая способность объектива не позволяет полностью использовать разрешающую способность глаза ( )

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ оптических приборов, характеризует их способность давать раздельные изображения двух близко расположенных точек. Из-за дифракции света изображение точки представляет собой не строго точку, а кружок (светлое пятно, окруженное кольцами). Наименьшее угловое или линейное расстояние между двумя точками, при котором система дает их раздельное изображение, называется пределом разрешения и характеризует границы применимости геометрической оптики. Обратная величина есть разрешающая способность, которая прямо пропорциональна апертуре прибора; поэтому для повышения разрешающей способности оптические телескопы имеют большой диаметр объектива. Разрешающая способность зависит от длины волны, на которой работает прибор, поэтому разрешающая способность электронного микроскопа в 1000 раз больше разрешающей способности оптического микроскопа.

Иммерсия в микроскопии — это введение между объективом микроскопа и рассматриваемым предметом жидкости для усиления яркости и расширения пределов увеличения изображения.

оптическая система, в которой пространство между первой линзой и предметом заполнено жидкостью. Применяемая так жидкость называется иммерсионной.

Из основной формулы разрешающей способности микроскопа: d = 0,61λ/А, следует, что предел разрешения определяется длиной волны λ и числовой апертурой объектива А. Так как не всегда возможно изменить длину волны, то для достижения лучшего разрешения стремятся применять объектив, имеющий большую числовую апертуру.

Однако для «сухого» объектива, с показателем преломления среды перед его передней линзой n=1, максимальное значение числовой апертуры объектива не может превысить значение около 0,95.

Для решения этой проблемы берут иммерсионную жидкость, показатель преломления которой n2 и показатель преломления фронтальной линзы n3 выбраны определённым образом. Исходящие от одной точки объекта OP лучи проходят без преломления через иммерсионную пленку и могут «приниматься» фронтальной линзой объектива.

В этом случае числовая апертура увеличивается, а предел разрешения уменьшается в n2 раз.

Возникающие на поверхностях покровного стекла и фронтальной линзе объектива паразитные отражения существенно меньше, нежели у «сухих» объективов, а в некоторых случаях паразитные рефлексы могут быть полностью устранены. Это улучшает контраст изображения и позволяет поднять освещённость препарата без вредного влияния на изображение.

Толщина слоя жидкости между объективом и препаратом может меняться, и за счет этого можно в некоторых пределах изменять компенсацию сферической аберрации.

Источники:

https://aco.ifmo.ru/el_books/introduction_into_specialization/glava-6/glava-6-2.html
https://studopedia.ru/4_14992_opticheskaya-sistema-mikroskopa.html
https://lektsii.org/15-26479.html

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов:
Для любых предложений по сайту: [email protected]